jueves, 21 de abril de 2016

GRAFOS EULERIANOS Y HAMILTONIANOS



Existen todavía algunas familias de grafos que se derivan del concepto de grafos conexos. Este es el caso de los grafos eulerianos y los grafos hamiltonianos. Estas familias de grafos nos permiten resolver el famoso problema de los puentes de Königsberg:
¿cuándo es posible hacer un recorrido de una figura (en este caso de un grafo múltiple) sin pasar dos veces por la misma línea o por el mismo vértice?

Tenemos dos grafos G1 y G2; es posible recorrer uno de ellos sin repetir ninguna línea, pero el otro no. ¿Cuál es cuál? Es evidente que el grafo G1 no puede ser recorrido sin repetir alguna de sus líneas, mientras que el grafo G2 sí.       


                           

Grafos Eulerianos


Recorrido cerrado

Cubre todas las líneas de un grafo, comenzando y terminando en un mismo vértice, recorriendo sin repetición y en forma continua todas las líneas de un grafo G cualquiera. Cuando tal recorrido existe, se denomina eulerianoy un grafo que se puede trazar mediante un recorrido euleriano se llamagrafo euleriano. En la fig. 3.11, G1 es obviamente un grafo euleriano; G2 no lo es, a pesar de que se puede trazar continuamente, ya que el recorrido comienza y termina en vértices distintos; finalmente, G3 no es un grafo euleriano, porque no se puede trazar continuamente.

                                


Diremos que un grafo G es la unión disjunta de ciclos, si podemos descomponer a G como la unión de ciclos que no tienen líneas en común, aunque se permite que tengan, al menos, un vértice en común.




En la figura el grafo se puede descomponer como la unión disjunta de los ciclos C = v1v2v3v4v5v6v1; C' = v1v7v5v1; C'' = v2v7v4v2; C''' = v3v8v9v3 y el recorrido euleriano para el grafo G viene dado por la secuencia de sus líneas 1, 2,..., 15.

OBSERVACION : Esta descomposición por lo general no es única. El grafo de la fig. 3.11 admite otra descomposición como unión disjunta de ciclos, por ejemplo, C = v1v2v7v1; C' = v3v4v2v3; C'' = v3v8v9v3; C''' = v7v4v5v7; C'''' = v5v1v6v5 .

Recíprocamente, supongamos que G es una unión disjunta de ciclos. Sea C un ciclo cualquiera en G. Si entonces G es un ciclo y por lo tanto euleriano. Si existe un ciclo C' en G que tiene un vértice v en común con C (por hipótesis). Si G es la unión de C y C', entonces, comenzando en v trazamos C y luego C', obteniendo así un recorrido euleriano de G. Si la unión de C y C' no es todo G, existe un ciclo C'' que tiene algún vértice v' en común con C o con C', digamos por ejemplo con C'. Si G es la unión de C, C' y C'', entonces comenzando en v trazamos C, luego trazamos C' hasta llegar a v' y luego trazamos C'' hasta completar C', luego regresamos a v como ilustra el diagrama de la fig. 3.13.


Así, obtenemos un recorrido euleriano de G. Si la unión de C, C' y C'' no es todo G, continuamos con este procedimiento hasta obtener un recorrido euleriano de G.


COROLARIO 2: Un grafo conexo es euleriano si y sólo si todos sus vértices tienen valencia par. (Este teorema rige también para multigrafos).

Demostración:
En un recorrido euleriano, cuando visitamos un vértice, necesitamos al menos dos líneas distintas adyacentes al vértice (una para llegar al vértice y otra para salir de él), incluyendo al vértice inicial, porque tenemos que regresar a él para concluir el recorrido. Esto significa, que cada vértice contribuye con un número par de líneas y, por lo tanto, su valencia es par.


Grafos Hamiltonianos

Definición: Un circuito o ciclo hamiltoniano es un ciclo simple que contiene todos los vértices de G. Un circuito hamiltoniano es una trayectoria que empieza y termina en el mismo vértice y pasa por cada vértice una sola vez. 

Ejemplos: ¿Cuál de los grafos siguientes admite un circuito hamiltoniano? 



Solución 
(a) No admite circuitos hamiltonianos. El razonamiento es el siguiente: Si se empieza en v1, v2, v3, v4 y si se está en los demás vértices, en el v5 se estará dos veces. Si se empieza en v5, para luego ir a los vértices v1 o v4 ó a v3 o v2 respectivamente, se tendrá que pasar de nuevo por v5 (puesto que se empezará en v5). Para completar el circuito, se debe regresar a v5, por lo que se pasa tres veces por él.
(b) Un ciclo hamiltoniano es: v1 e1 v2 e2 v3 e3 v4 e4 v1 Teorema. Sea G un grafo conexo con n vértices, donde n≥3. 

Si la suma de los grados de cada par de vértices no adyacentes es mayor o igual a n, entonces G tiene un circuito hamiltoniano. 





Cibergrafia:

http://campus.cva.itesm.mx/nazira/Tc1003/PDF/TODO/0702_Tc1003_TODO_Euler_Hamilton.pdf
http://teoriadegrafos.blogspot.com.co/2007/03/grafos-eulerianos-y-hamiltonianos.html


No hay comentarios:

Publicar un comentario